

LABORATORY MANUAL

For

E-CAD LAB

(III B. Tech ECE- II Semester- R18 .AY:2021 - 22)

Prepared by

1. Mr. M. RANJITH REDDY, Asst. Professor

2. Mr. K. RAJESH, Asst. Professor

Department of

Electronics & Communication Engineering
2022

www.siddhartha.co.in

http://www.siddhartha.co.in/

SIDDHARTHA INSTITUTE OF TECHNOLOGY & SCIENCES

CONTENTS

S. No Description Page No.

1 Vision & Mission of the Institute i

2 Vision & Mission of the Department ii

3 Program Outcomes iii

4 Rules and Regulations of Lab iv

5 Introduction to Xilinix 1-11

6 HDL code to realize all logic gates 12-13

7 Design of 2-to-4 encoder 15-16

8 Design of 8-to-3 encoder 17-19

9 Design of 8-to-1 multiplexer and 1x8 demultiplexer 20-21

10 Design of 4 bit binary to gray code converter 22-23

11 Design of 4-bit comparator 24-26

12 Design of full adder using three modelling styles 27-32

13 Design of flip flops (SR,JK,D,T) 33-35

14 Finite state machine design 36-37

15 Design & Implementation of an Inverter 38-40

16 NAND Gate 41-44

17 NOR Gate 45-47

18 X-OR Gate 48-52

ADDITIONAL

EXPERIMENTS

SIDDHARTHA INSTITUTE OF TECHNOLOGY & SCIENCES

VISION & MISSION OF THE INSTITUTE

i

VISION:

To be a Centre of Excellence in Technical Education and to become an epic center of Research for
creative solutions.

MISSION:

To address the Emerging Needs through Quality Technical Education with an emphasis on practical
skills and Advanced Research with social relevance.

OBJECTIVES:

 To translate our vision into action and accomplish our mission, we strive to provide state-of-art

infrastructure.

 Recruit, Motivate and develop faculty of high caliber and with multiple specialization.

 Continuously review, innovate and experiment teaching methodologies and learning

processes.

 Focus on research, training and consultancy through an Integrated Institute-Industry

symbiosis.

SIDDHARTHA INSTITUTE OF TECHNOLOGY & SCIENCES

VISION & MISSION OF THE DEPARTMENT

ii

VISION:

To provide innovative teaching and learning methodologies for excelling in a high-value career, higher

education and research to the students in the field of Electronics and Communication Engineering to

meet the needs of the industry and to be a part of the advancing technological revolution.

MISSION:

 To create engineers of high quality on par with international standards by providing excellent

infrastructure and well qualified faculty.

 To establish centers of excellence to enhance collaborative and multidisciplinary activities to

develop human and intellectual qualities.

 To provide technical expertise to carry out research and development.

PROGRAM EDUCATIONAL OBJECTIVES (PEOS) :

Graduates shall apply the fundamental, advanced and contemporary knowledge of

1. Electronics, Communication and allied Engineering, to develop efficient solutions

and systems, to meet the needs of the industries and society.

2. Graduates will get employed or pursue higher studies or research.

3. Graduates will have team spirit, good communication skills and ethics with

lifelong learning attitude.

iii

SIDDHARTHA INSTITUTE OF TECHNOLOGY & SCIENCES

PROGRAM OUTCOMES:

Engineering Graduates will be able to:

1. Engineering Knowledge: Apply the knowledge of mathematics, science, engineering fundamentals, and

an engineering specialization to the solution of complex engineering problems.

2. Problem analysis: Identify, formulate, review research literature, and analyze complex engineering

problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and

engineering sciences.

3. Design/development of solutions: Design solutions for complex engineering problems and design

system components or processes that meet the specified needs with appropriate consideration for the

public health and safety, and the cultural, societal, and environmental considerations.

4. Conduct investigations of complex problems: Use research-based knowledge and research methods

including design of experiments, analysis and interpretation of data, and synthesis of the information to

provide valid conclusions.

5. Modern tool usage: Create, select, and apply appropriate techniques, resources, and modern engineering

and IT tools including prediction and modeling to complex engineering activities with an understanding of

the limitations.

6. The engineer and society: Apply reasoning informed by the contextual knowledge to assess societal,

health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional

engineering practice.

7. Environment and sustainability: Understand the impact of the professional engineering solutions in

societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable

development.

8. Ethics: Apply ethical principles and commit to professional ethics and responsibilities and norms of the

engineering practice.

9. Individual and team work: Function effectively as an individual, and as a member or leader in diverse

teams, and in multidisciplinary settings.

10. Communication: Communicate effectively on complex engineering activities with the engineering

community and with society at large, such as, being able to comprehend and write effective reports and

design documentation, make effective presentations, and give and receive clear instructions.

11. Project management and finance: Demonstrate knowledge and understanding of the engineering and

management principles and apply these to one’s own work, as a member and leader in a team, to manage

projects and in multidisciplinary environments.

12. Life-long learning: Recognize the need for, and have the preparation and ability to engage in independent

and life-long learning in the broadest context of technological change.

iv

RULES AND REGULATIONS OF LAB

All students must observe the Dress Code while in the laboratory.

 All bags must be placed at rack.

 The lab timetable must be strictly followed.

 Be PUNCTUAL for your laboratory session.

 Program/experiment must be executed within the given time.

 Workspace must be kept clean and tidy at all time.

 Handle the systems and interfacing kits with care.

 All students are liable for any damage to the accessories due to their own negligence.

 All interfacing kits connecting cables must be RETURNED if you taken from the lab supervisor.

 Students are strictly PROHIBITED from taking out any items from the laboratory.

 Students are NOT allowed to work alone in the laboratory without the Lab Supervisor

 USB Ports have been disabled if you want to use USB drive consult lab supervisor.

 Report immediately to the Lab Supervisor if any malfunction of the accessories, is there

Before leaving the lab

 Place the chairs properly.

 Turn off the system properly

 Turn off the monitor.

 Please check the laboratory notice board regularly for updates.

INTRODUCTION - XILINX

Xilinx ISE is a software tool produced by Xilinx for synthesis and analysis of HDL designs,
which enables the developer to synthesize ("compile") their designs, perform timing analysis,

examine RTL diagrams, simulate a design's reaction to different stimuli, and configure the

target device with the programmer.

In our Lab, the scope is limited to design and analyze the design using test benches &

simulation.

The following is the step by step procedure to design in the Xilinx ISE:

1. New Project Creation

Once the Xilinx ISE Design suite is started, open a new project & enter your design

name and the location path. By default ‘HDL’ is selected as the top-level source type. (If

not, please select Top-level source type as ‘HDL’)

1

http://en.wikipedia.org/wiki/Xilinx
http://en.wikipedia.org/wiki/Xilinx
http://en.wikipedia.org/wiki/Xilinx
http://en.wikipedia.org/wiki/Hardware_description_language
http://en.wikipedia.org/wiki/Logic_synthesis
http://en.wikipedia.org/wiki/Static_timing_analysis
http://en.wikipedia.org/wiki/Static_timing_analysis
http://en.wikipedia.org/wiki/Register_transfer_level
http://en.wikipedia.org/wiki/Programmer_(hardware)
http://en.wikipedia.org/wiki/Programmer_(hardware)

2. Continue to the next window and check if the Preferred Language is selected as ‘Verilog’

3. Proceed by clicking ‘Next’ and create a ‘New Source’ using the ‘Create New Source’

Window

2

4. Select the source type as ‘Verilog Module’ and input a filename and proceed to ‘Next’. In

the next window ‘Define Module’ enter the ports.

5. Finish with the New project setup with the ‘Summary’ window.

3

6. Once ‘Finish’ is selected a pop-up appears to create the directory. Select ‘yes’

7. Then proceed to ‘Next’ in the “New Project Wizard’ to ‘Add Existing Sources’. ‘Add

source’ if an existing source is available, If not proceed to ‘Next’ and finish with the

‘Project Summary’ window

4

8. Design Entry and Syntax Check

The ports defined during the ‘Project Creation’ are defined as a module in the ‘filename.v’

file

9. Input your design (verilog code) within the module definition

5

10. Select the design from the ‘Hierarchy‘window. In the below window of Processes

‘Implement Design ‘would be orange (in color) ready for implementation

11. Double click on implement design, it turns green (in color) once the design is
implemented successfully and the Summary report is displayed.

6

12. Test-Bench creation, Simulation & Verification

To add a test-bench to the existing design, right click on the ‘.v’ file from the Hierarchy

window and select ‘New Source’

13. Select ‘Verilog Text Fixture’ from the Select Source Type and name the Test-Bench

7

14. Continue to ‘Finish’ and a test bench is added in the project area

15. Edit the test bench as per your simulation requirements and select ‘Behavioral Simulation’

in the ‘Design Window’. In the Processes window Isim Simulator would be displayed. First

Proceed with the Behavioral Check Syntax

8

16. Double click on ‘Behavioral Check Syntax’ & check for no errors

17. Then double click on ‘Simulate Behavioral Model’ and the ISIM simulator window

would open. Check for the outputs

9

A B Y=AB

0 0 0

0 1 0

1 0 0

1 1 1

A B Y=A+B

0 0 0

0 1 1

1 0 1

1 1 1

A Y=A’

0 0

0 1

A B Y=(AB)’

0 0 1

0 1 1

1 0 1

1 1 0

EXPERIMENT No: 1

AIM:

HDL CODE TO REALIZE ALL LOGIC GATES

To develop the source code for logic gates by using VERILOG and obtain the simulation.

SOFTWARE & HARDWARE:

1. XILINX 9.2i

2. FPGA-SPARTAN-3E

LOGIC DIAGRAM:

AND GATE: OR GATE:

LOGIC DIAGRAM: TRUTH TABLE: LOGICDIAGRAM TRUTH TABLE:

NOT GATE: NAND GATE:

LOGIC DIAGRAM: TRUTH TABLE: LOGICDIAGRAM TRUTH TABLE

NOR GATE: XOR GATE:

LOGIC DIAGRAM: TRUTH TABLE: LOGICDIAGRAM TRUTH TABLE:

10

A
0

B
0

Y=(A+B)’
1

A B

0 0

 0

0 1 1
1 0 1

1 1 0

0 1 0
1 0 0

1 1 0

XNOR GATE:

LOGIC DIAGRAM: TRUTH TABLE:

VERILOG SOURCE CODE:

module logicgates1(a, b, c);
input a;

input b;
OUTPUT: [6:0] c;

assign c[0]= a & b;
assign c[1]= a | b;

assign c[2]= ~(a & b);

assign c[3]= ~(a | b);

assign c[4]= a ^ b;

assign c[5]= ~(a ^ b);

assign c[6]= ~ a;

endmodule

SIMULATION OUTPUT:

RESULT:

Thus the OUTPUT’s of all logic gates are verified by simulating the VERILOG code.

11

A B C Z(0) Z(1) Z(2) Z(3)

0 0 1 0 1 1 1

0 1 1 1 0 1 1

1 0 1 1 1 0 1

1 1 1 1 1 1 0

EXPERIMENT No: 2

DESIGN OF 2-TO-4 ENCODER

AIM:

To develop the source code for encoder by using VERILOG and obtain the simulation.

SOFTWARE & HARDWARE:

1. XILINX 9.2i
2. FPGA-SPARTAN-3E

DECODER

LOGIC DIAGRAM: TRUTH TABLE:

VERILOG SOURCE CODE:

module decoderbehv(a, b, en, z);

input a;

input b;

input en;

output [3:0] z;

reg [3:0] z;
reg abar,bbar;

always @ (a,b,en) begin

z[0] = (abar&bbar&en);

z[1] = (abar&b&en);

z[2] = (a&bbar&en);

z[3] = (a&b&en);

end

endmodule

12

SIMULATION OUTPUT:

RESULT:

Thus the OUTPUT’s of encoder are verified by simulating the VERILOG code.

13

 ECE,

MRCET

EXPERIMENT No: 3

AIM:

 DESIGN OF 8-TO-3 ENCODER

To develop the source code for encoder by using VERILOG and obtain the simulation.

SOFTWARE & HARDWARE:

1. XILINX 9.2i

2. FPGA-SPARTAN-3E

ENCODER:

TRUTH

LOGIC DIAGRAM: TABLE:

D0 D1 D2 D3 D4 D5 D6 D7 X Y Z

1 0 0 0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0 0 1

0 0 1 0 0 0 0 0 0 1 0

0 0 0 1 0 0 0 0 0 1 1

0 0 0 0 1 0 0 0 1 0 0

0 0 0 0 0 1 0 0 1 0 1

0 0 0 0 0 0 1 0 1 1 0

0 0 0 0 0 0 0 1 1 1 1

VERILOG SOURCE CODE:

module encoderbehav(d, a,b,c);

input [7:0] d;

output x;

output y;

output z;

reg a,b,c;

always @ (d [7:0]) begin

a= d[4] | d[5] | d[6] | d[7];

b= d[2] | d[3] | d[6] | d[7];
c= d[1] | d[3] | d[5] | d[7];
end

endmodule

15

 ECE E-CAD LAB MANUAL SITS

SIMULATION OUTPUT:

RESULT:

Thus the OUTPUT’s of Encoded are verified by simulating the VERILOG code.

16

 ECE E-CAD LAB MANUAL SITS

EXPERIMENT No: 4

DESIGN OF 8-to-1MULTIPLEXER AND 1X8 DEMULTIPLEXER

AIM:
To develop the source code for 8x1 multiplexer and demultiplexer by using VERILOG and

obtain the simulation.

SOFTWARE & HARDWARE:

1. XILINX 9.2i

2. FPGA-SPARTAN-3E

MULTIPLEXER:

LOGIC DIAGRAM:

17

 ECE E-CAD LAB MANUAL SITS

TRUTH TABLE:

VERILOG SOURCE CODE:

module MUX8TO1(sel, A,B,C,D,E,F,G,H, MUX_OUT);

input [2:0] sel;

input A,B,C,D,E,F,G,H;
output reg MUX_OUT;

always@(A,B,C,D,E,F,G,H,sel)

begin

case(sel)

3'd0:MUX_OUT=A;

3'd1:MUX_OUT=B;

3'd2:MUX_OUT=C;

3'd3:MUX_OUT=D;

3'd4:MUX_OUT=E;

3'd5:MUX_OUT=F;

3'd6:MUX_OUT=G;

3'd7:MUX_OUT=H;

default:; // indicates null

endcase

end

endmodule

18

 ECE E-CAD LAB MANUAL SITS

SIMULATION OUTPUT:

DEMULTIPLEXER:

LOGIC DIAGRAM:

RESULT:

Thus the OUTPUT’s of Multiplexers and Demultiplexers are verified by simulating the

VHDL and VERILOG code.

19

 ECE E-CAD LAB MANUAL SITS

EXPERIMENT No: 5

DESIGN OF 4-BIT BINARY TO GRAY CONVERTER

AIM:

To develop the source code for binary to gray converter by using VERILOG and obtained
the simulation.

SOFTWARE & HARDWARE:

1. XILINX 9.2i

2. FPGA-SPARTAN-3E

CODE CONVERTER (BCD TO GRAY):

TRUTH TABLE:

BCD GRAY

0000 0000

0001 0001

0010 0011

0011 0010

0100 0110

0101 0111

0110 0101

0111 0100

1000 1100

1001 1101

LOGIC DIAGRAM:

BEHAVIORAL MODELING:

module b2g_behv(b, g);

input [3:0] b;

output [3:0] g;
reg [3:0] g;

20

 ECE E-CAD LAB MANUAL SITS

always@(b) begin

g[3]=b[3];

g[2]=b[3]^b[2];

g[1]=b[2]^b[1];

g[0]=b[1]^b[0];

end

endmodule

SIMULATION OUTPUT:

RESULT:

Thus the OUTPUT’s of binary to gray converter are verified by simulating the VERILOG

code.

21

 ECE E-CAD LAB MANUAL SITS

EXPERIMENT No: 6

4-BIT COMPARATOR

AIM:

To develop the source code for 4-Bit comparator by using VERILOG and obtained the

simulation .

SOFTWARE & HARDWARE:

1. XILINX 9.2i

2. FPGA-SPARTAN-3E

4-BIT COMPARATOR:

LOGIC DIAGRAM:

VERILOG SOURCE CODE:

module comparator (a ,b ,equal ,greater ,lower);

output equal ;

output greater ;

output lower ;

input [3:0] a ;

input [3:0] b ;

always @ (a or b) begin

if (a<b) begin

equal = 0;
lower = 1;

greater = 0;

end else if (a==b) begin
equal = 1;

lower = 0;
greater = 0;

end else begin

equal = 0;

lower = 0;
greater = 1;

end

end

endmodule

22

 ECE E-CAD LAB MANUAL SITS

SIMULATION OUTPUT:

RESULT:

Thus the OUTPUT’s of 4-bit comparator is verified by simulating the VERILOG code.

23

 ECE E-CAD LAB MANUAL SITS

A B C SUM CARRY

0 0 0 0 0

0 0 1 1 0

0 1 0 1 0

0 1 1 0 1

1 0 0 1 0

1 0 1 0 1

1 1 0 0 1

1 1 1 1 1

EXPERIMENT No: 7

DESIGN OF FULL ADDER USING THREE MODELING STYLES

AIM:

To develop the source code for full adder using three modeling styles by using VERILOG

and obtained the simulation.

SOFTWARE & HARDWARE:

1. XILINX 9.2i

2. FPGA-SPARTAN-3E

FULL ADDER:

LOGIC DIAGRAM: TRUTH TABLE:

VERILOG SOURCE CODE:

Dataflow Modeling:

module fulladddataflow(a, b, c, sum, carry);

input a;

input b;
input c;
output sum;
output carry;

assign#2 p=a&b;

assign#2 q=b&c;

assign#2 r=c&a;

assign#4 sum=a^b^c;

assign#4carry =(p1 | p2) | p3;

endmodule

24

 ECE E-CAD LAB MANUAL SITS

Behavioral Modeling:

module fuladbehavioral(a, b, c, sum, carry);

input a;

input b;

input c;

output sum;

output carry;

reg sum,carry;

reg p1,p2,p3;

always @ (a or b or c) begin

sum = (a^b)^c;

p1=a & b;

p2=b & c;

p3=a & c;

carry=(p1 | p2) | p3;

end

endmodule

Structural Modeling:

module fa_struct(a, b, c, sum, carry);

input a;

input b;

input c;

output sum;

output carry;

wire t1,t2,t3,s1

xor

x1(t1a,b),
x2(sum,s1,c);

and

a1(t1,a,b),

a2(t2,b,c),

a3(t3,a,c);

or

o1 (carry, t1, t2, t3);
endmodule

25

 ECE E-CAD LAB MANUAL SITS

SIMULATION OUTPUT:

RESULT:

Thus the OUTPUT’s of full adder using three modeling styles are verified by simulating the

VERILOG code.

26

 ECE E-CAD LAB MANUAL SITS

Q(t) S R Q(t+1)

0 0 0 0

0 0 1 0

0 1 0 1

0 1 1 X

1 0 0 1

1 0 1 0

1 1 0 1

1 1 1 X

EXPERIMENT No: 8

DESIGN OF FLIP FLOPS (SR,JK,D,T)

AIM:
To develop the source code for FLIP FLOPS by using VERILOG and obtained the

simulation.

SOFTWARE & HARDWARE:

1. XILINX 9.2i

2. FPGA-SPARTAN-3E

SR FLIPFLOP:

LOGIC DIAGRAM: TRUTH TABLE:

VERILOG SOURCE CODE:

Behavioral Modeling:

module srflipflop(s, r, clk, rst, q, qbar);
input s;

input r;
input clk;
input rst;
output q;

output qbar;

reg q,qbar;
always @ (posedge(clk) or posedge(rst)) begin

if(rst==1'b1) begin
q= 1'b0;qbar= 1'b1;
end

else if(s==1'b0 && r==1'b0)
begin

27

 ECE E-CAD LAB MANUAL SITS

Q(t) J K Q(t+1)

0 0 0 0

0 0 1 0

0 1 0 1

0 1 1 1

1 0 0 1

1 0 1 0

1 1 0 1

1 1 1 0

q=q; qbar=qbar;

end

else if(s==1'b0 &&

begin
q= 1'b0; qbar= 1'b1;

end

r==1'b1)

else if(s==1'b1 && r==1'b0)

begin
q= 1'b1; qbar= 1'b0;

end

else

begin

q=1'bx;qbar=1'bx;

end

end

endmodule

SIMULATION OUTPUT:

JK FLIPFLOP:

LOGIC DIAGRAM: TRUTH TABLE:

 28

 ECE E-CAD LAB MANUAL SITS

VERILOG SOURCE CODE:

Behavioral Modeling:

module jkff(j, k, clk, rst, q, qbar);

input j;

input k;

input clk;

input rst;

output q;

output qbar;

reg q;
reg qbar;

always @ (posedge(clk) or posedge(rst)) begin

if (rst==1'b1)

begin

q=1'b0;

qbar=1'b1;

end

else if (j==1'b0 && k==1'b0)

begin

q=q;

qbar=qbar;

end

else if (j==1'b0 && k==1'b1)

begin
q=1'b0;
qbar=1'b1;

end

else if (j==1'b1 && k==1'b0)

begin

q=1'b1;

qbar=1'b0;

end

else

begin

q=~q;

qbar=~qbar;
end

end

endmodule

29

 ECE E-CAD LAB MANUAL SITS

Q(t) D Q(t+1)

0 0 0

0 1 1

1 0 0

1 1 1

SIMULATION OUTPUT:

D FLIPFLOP:

LOGIC DIAGRAM: TRUTH TABLE:

VERILOG SOURCE CODE:

Behavioral Modeling:

module dff(d, clk, rst, q, qbar);

input d;

input clk;

input rst;

output q;

output qbar;

reg q;

reg qbar;

always @ (posedge(clk) or posedge(rst)) begin
if (rst==1'b1)

begin

q=1'b0;

qbar=1'b1;

end

else if (d==1'b0)

begin
q=1'b0;
qbar=1'b1;

end

else

begin

q=1'b1;

qbar=1'b0;

end

end
endmodule

30

 ECE E-CAD LAB MANUAL SITS

SIMULATION OUTPUT:

T-FLIP FLOP

LOGIC DIAGRAM: TRUTH TABALE:

31

 ECE E-CAD LAB MANUAL SITS

VERILOG SOURCE CODE:

module t_flip_flop (t ,clk ,reset ,dout);

output dout ;

input t ;

input clk ;

always @ (posedge (clk)) begin

if (reset)

dout <= 0;

else begin

if (t)

dout <= ~dout;

end

end

endmodule

SIMULATION OUTPUT:

RESULT:

Thus the OUTPUT’s of Flip Flops are verified by simulating the VERILOG code.

32

 ECE E-CAD LAB MANUAL SITS

EXPERIMENT-9

DESIGN OF 4-BIT BINARY COUNTER AND BCD COUNTER

AIM:

To develop the source code for 4-bit binary counter and BCD counter by using VERILOG

and obtained the simulation.

SOFTWARE & HARDWARE:

1. XILINX 9.2i

2. FPGA-SPARTAN-3E

LOGIC DIAGRAM:

VERILOG SOURCE CODE:

module Counter_4Bit (clk ,reset ,dout);

output [3:0] dout ;

input clk ;
input reset ;

initial dout = 0;

always @ (posedge (clk)) begin
if (reset)

dout <= 0;

else

dout <= dout + 1;

end

endmodule

33

 ECE E-CAD LAB MANUAL SITS

SIMULATION OUTPUT:

BCD COUNTER

LOGIC DIAGRAM

VERILOG SOURCE CODE

module BCD_Counter (clk ,reset ,dout);

output [3:0] dout ;;

input clk ;
input reset ;
initial dout = 0 ;

always @ (posedge (clk)) begin

if (reset)

dout <= 0;

else if (dout<=9) begin

dout <= dout + 1;

end else if (dout==9) begin

dout <= 0;

end

end

endmodule

 ECE E-CAD LAB MANUAL SITS

SIMULATION OUTPUT:

RESULT:

Thus the OUTPUT’s of 4-bit counter and BCD COUNTER using three modeling styles are

verified by synthesizing and simulating the VERILOG code

35

 ECE E-CAD LAB MANUAL SITS

EXPERIMENT: 10

FINITE STATE MACHINE DESIGN

AIM:

To develop the source code for finite state machine design by using VERILOG and obtained

the simulation

SOFTWARE & HARDWARE:

1. XILINX 9.2i

2. FPGA-SPARTAN-3E

FSM DESIGN

VERILOG SOURCE CODE:

module fsm_using_function (

clock , // clock

reset , // Active high, syn reset

req_0 , // Request 0

req_1 , // Request 1

gnt_0 , // Grant 0

gnt_1

);

//------ -----Input Ports--- ----- - ------- -----

input clock,reset,req_0,req_1;

//------ -----Output Ports-- ----- - ------- -----

output gnt_0,gnt_1;

// Input ports Data Type

// Output Ports Data Type

reg gnt_0,gnt_1;

// Internal Constants

parameter SIZE = 3 ;

parameter IDLE = 3'b001,GNT0 = 3'b010,GNT1 = 3'b100 ; //-----

 Internal Variables

reg [SIZE-1:0] state ;// Seq part of the FSM

// Code startes Here

assign next_state = fsm_function(state, req_0, req_1);

// Function for Combo Logic

function [SIZE-1:0] fsm_function;

input [SIZE-1:0] state ;

input req_0 ;

input req_1 ;

case(state)

IDLE : if (req_0 == 1'b1) begin

fsm_function = GNT0;

end else if (req_1 == 1'b1) begin

fsm_function= GNT1;

end else begin

fsm_function = IDLE;

end

GNT0 : if (req_0 == 1'b1) begin
fsm_function = GNT0;

36

 ECE E-CAD LAB MANUAL SITS

end else begin

fsm_function = IDLE;

end

GNT1 : if (req_1 == 1'b1) begin

fsm_function = GNT1;

end else begin

fsm_function = IDLE;

end

default : fsm_function = IDLE;

endcase

endfunction
// Seq Logic

always @ (posedge clock)

begin : FSM_SEQ
if (reset == 1'b1) begin

state <= #1 IDLE;

end else begin

state <= #1 next_state;

end

end

// Output Logic

always @ (posedge clock)

begin : OUTPUT_LOGIC

if (reset == 1'b1) begin

gnt_0 <= #1 1'b0;

gnt_1 <= #1 1'b0;

end

else begin

case(state)

IDLE : begin

GNT0 : begin

gnt_0 <= #

gnt_1 <= 1

1

end

1'b0;

1'b0;

GNT1 : begin

end

end

gnt_0 <= #1 1'b1;

gnt_1 <= #1 1'b0;

gnt_0 <= #1 1'b0;

gnt_1 <= #1 1'b1;

default : begin

endcase

end

gnt_0 <= #1 1'b0;

gnt_1 <= #1 1'b0;

end

end // End Of Block

OUTPUT_LOGIC endmodule // End

of Module arbiter

RESULT:
Thus the OUTPUT’s of finite state machine design is verified by simulating the VERILOG

code.

37

 ECE E-CAD LAB MANUAL SITS

EXPERIMENT: 11

DESIGN AND IMPLEMENTATION OF AN INVERTER

AIM: To design and Implementation of an Inverter

TOOLS: Mentor Graphics: Pyxis Schematic, Pyxis Layout, Eldo, Ezwave, Calibre

THEORY:

The inverter is universally accepted as the most basic logic gate doing a Boolean operation on a

single input variable. Fig.1 depicts the symbol, truth table and a general structure of a CMOS

inverter. As shown, the simple structure consists of a combination of an pMOS transistor at the

top and a nMOS transistor at the bottom.CMOS is also sometimes referred to as

complementary-symmetry metal–oxide–semiconductor. The words "complementary- symmetry"

refer to the fact that the typical digital design style with CMOS uses complementary and

symmetrical pairs of p-type and n-type metal oxide semiconductor field effect transistors

(MOSFETs) for logic functions. Two important characteristics of CMOS devices are high noise

immunity and low static power consumption. Significant power is only drawn while the

transistors in the CMOS device are switching between on and off states. Consequently, CMOS

devices do not produce as much waste heat as other forms of logic, for example transistor-

transistor logic (TTL) or NMOS logic, which uses all n-channel devices without p-channel

devices.

 ECE E-CAD LAB MANUAL SITS

Schematic Capture:

Procedure:

1. Connect the Circuit as shown in the circuit diagram using Pyxis Schematic tool

2. Enter into Simulation mode.

3. Setup the Analysis and library.

4. Setup the required analysis.

5. Probe the required Voltages

6. Run the simulation.

7. Observe the waveforms in EZ wave.

8. Draw the layout using Pysis Layout.

9. Perform Routing using IRoute

10. Perform DRC, LVS, PEX.

 ECE E-CAD LAB MANUAL SITS

Schematic Symbol:

Testing the Schematic:

Simulation Output: Input Vs Output Transient and DC Characteristics:

 ECE E-CAD LAB MANUAL SITS

Layout of the Inverter:

 ECE E-CAD LAB MANUAL SITS

EXPERIMENT: 12

NAND GATE

AIM: To create a library and build a schematic of a NAND GATE, to create a symbol for

the Inverter, to build an Inverter Test circuit using your Inverter, To set up and run

simulations on the Inverter Test design.

EDA Tool: Mentor Graphics

Schematic Diagram

 ECE E-CAD LAB MANUAL SITS

PROCEDURE:

1. Connect the Circuit as shown in the circuit diagram using Pyxis schematic.

2. Create a simulation schematic for simulation.

3. Add necessary nets in outputs to view waveforms.

4. Run the Simulation and observe results in EZwave.

5. Draw the Layout for the circuit using Pyxis Layout.

7. Run the physical verification (DRC, LVS, PEX) using Calibre tool .

8. Run the post layout simulation by adding the .dspf file generated in PEX.

9. Observe the post layout results.

Symbol Creation:

 ECE E-CAD LAB MANUAL SITS

Building the NAND Test Design

Creating a layout view of NAND gate

 ECE E-CAD LAB MANUAL SITS

Simulation Output:

 ECE E-CAD LAB MANUAL SITS

EXPERIMENT NO: 13

NOR GATE

AIM: To design and simulate the CMOS NOR gate

TOOLS: Mentor Graphics: Pyxis Schematic, Pyxis Layout, Eldo, Ezwave, Calibre

CIRCUIT DIAGRAM:

 ECE E-CAD LAB MANUAL SITS

SIMULATION CIRCUIT:

PROCEDURE:

1. Connect the Circuit as shown in the circuit diagram using Pyxis schematic.

2. Create a simulation schematic for simulation.

3. Add necessary nets in outputs to view waveforms.

4. Run the Simulation and observe results in EZwave.

5. Draw the Layout for the circuit using Pyxis Layout.

7. Run the physical verification (DRC, LVS, PEX) using Calibre tool .

8. Run the post layout simulation by adding the .dspf file generated in PEX.

9. Observe the post layout results.

 ECE E-CAD LAB MANUAL SITS

Simulation Output:

Layout:

 ECE E-CAD LAB MANUAL SITS

 EXPERIMENT NO: 14

 XOR GATE

AIM: To create a library and build a schematic of an XOR gate, to create a symbol for the

XOR, to build an inverter test circuit using your XOR, to set up and run simulations on the

XOR_test design.

EDA TOOLS: pyxis schematic, pyxis layout, eldo, ezwave, calibre

PROCEDURE:

1. Connect the Circuit as shown in the circuit diagram using Pyxis schematic.

2. Create a simulation schematic for simulation.

3. Add necessary nets in outputs to view waveforms.

4. Run the Simulation and observe results in EZwave.

5. Draw the Layout for the circuit using Pyxis Layout.

 ECE E-CAD LAB MANUAL SITS

7. Run the physical verification (DRC, LVS, PEX) using Calibre tool .

8. Run the post layout simulation by adding the .dspf file generated in PEX.

9. Observe the post layout results.

Symbol Creation:

Building the XOR Gate Test Design

 ECE E-CAD LAB MANUAL SITS

PROCEDURE:

1. Connect the Circuit as shown in the circuit diagram using Pyxis schematic.

2. Create a simulation schematic for simulation.

3. Add necessary nets in outputs to view waveforms.

4. Run the Simulation and observe results in EZwave.

5. Draw the Layout for the circuit using Pyxis Layout.

7. Run the physical verification (DRC, LVS, PEX) using Calibre tool .

8. Run the post layout simulation by adding the .dspf file generated in PEX.

9. Observe the post layout results

Simulation output:

Layout:

 ECE E-CAD LAB MANUAL SITS

52

