

LABORATORY MANUAL

For

E-CAD LAB

(III B. Tech ECE- II Semester- R18 .AY:2021 - 22)

Prepared by

1. Mr. M. RANJITH REDDY, Asst. Professor

2. Mr. K. RAJESH, Asst. Professor

Department of

Electronics & Communication Engineering 2022

www.siddhartha.co.in

CONTENTS

S. No	Description	Page No.
1	Vision & Mission of the Institute	i
2	Vision & Mission of the Department	ii
3	Program Outcomes	iii
4	Rules and Regulations of Lab	iv
5	Introduction to Xilinix	1-11
6	HDL code to realize all logic gates	12-13
7	Design of 2-to-4 encoder	15-16
8	Design of 8-to-3 encoder	17-19
9	Design of 8-to-1 multiplexer and 1x8 demultiplexer	20-21
10	Design of 4 bit binary to gray code converter	22-23
11	Design of 4-bit comparator	24-26
12	Design of full adder using three modelling styles	27-32
13	Design of flip flops (SR,JK,D,T)	33-35
14	Finite state machine design	36-37
15	Design & Implementation of an Inverter	38-40
16	NAND Gate	41-44
17	NOR Gate	45-47
18	X-OR Gate	48-52

ADDITIONAL EXPERIMENTS							

VISION & MISSION OF THE INSTITUTE

VISION:

To be a Centre of Excellence in Technical Education and to become an epic center of Research for creative solutions.

MISSION:

To address the Emerging Needs through Quality Technical Education with an emphasis on practical skills and Advanced Research with social relevance.

OBJECTIVES:

- To translate our vision into action and accomplish our mission, we strive to provide state-of-art infrastructure.
- Recruit, Motivate and develop faculty of high caliber and with multiple specialization.
- Continuously review, innovate and experiment teaching methodologies and learning processes.
- Focus on research, training and consultancy through an Integrated Institute-Industry symbiosis.

VISION & MISSION OF THE DEPARTMENT

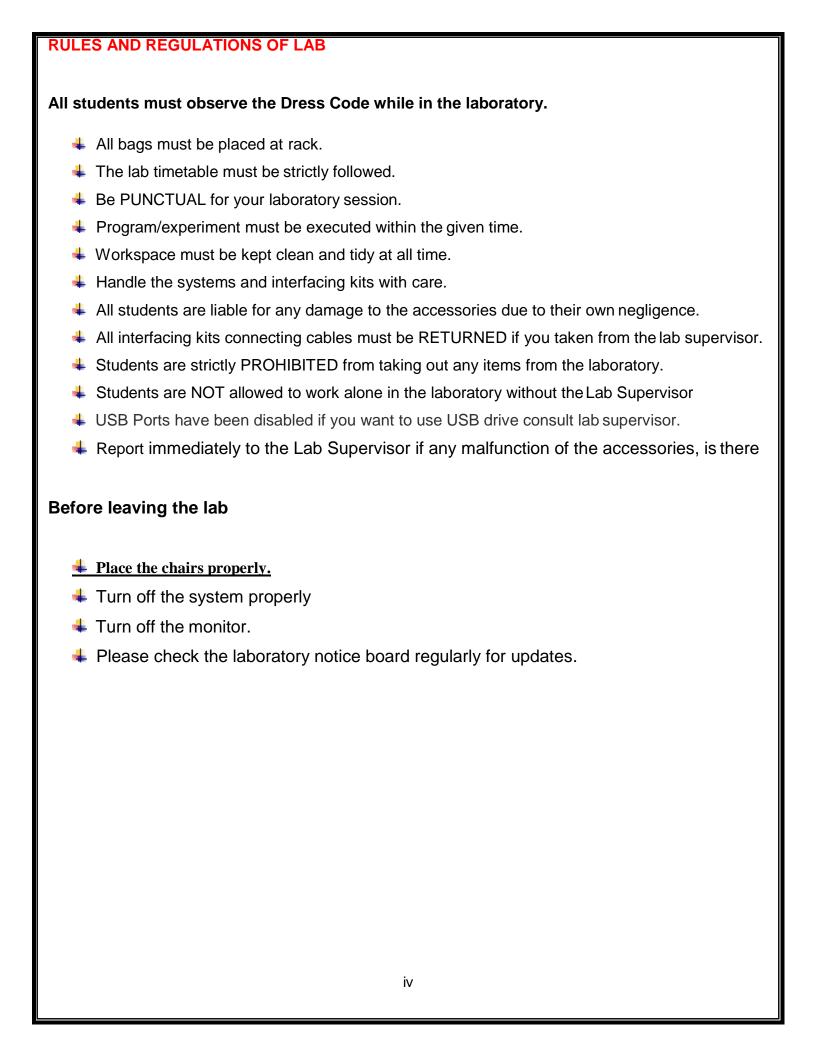
VISION:

To provide innovative teaching and learning methodologies for excelling in a high-value career, higher education and research to the students in the field of Electronics and Communication Engineering to meet the needs of the industry and to be a part of the advancing technological revolution.

MISSION:

- To create engineers of high quality on par with international standards by providing excellent infrastructure and well qualified faculty.
- To establish centers of excellence to enhance collaborative and multidisciplinary activities to develop human and intellectual qualities.
- To provide technical expertise to carry out research and development.

PROGRAM EDUCATIONAL OBJECTIVES (PEOS) :


Graduates shall apply the fundamental, advanced and contemporary knowledge of

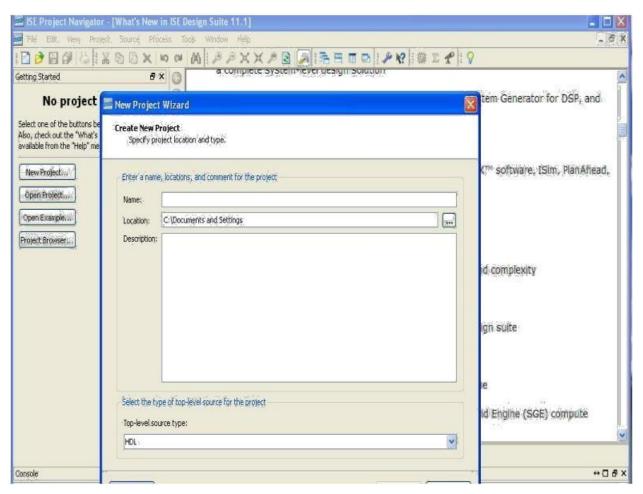
- 1. Electronics, Communication and allied Engineering, to develop efficient solutions and systems, to meet the needs of the industries and society.
- 2. Graduates will get employed or pursue higher studies or research.
- 3. Graduates will have team spirit, good communication skills and ethics with lifelong learning attitude.

PROGRAM OUTCOMES:

Engineering Graduates will be able to:

- 1. **Engineering Knowledge:** Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialization to the solution of complex engineering problems.
- 2. **Problem analysis:** Identify, formulate, review research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.
- 3. **Design/development of solutions:** Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations.
- 4. **Conduct investigations of complex problems:** Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.
- 5. **Modern tool usage:** Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools including prediction and modeling to complex engineering activities with an understanding of the limitations.
- 6. **The engineer and society:** Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering practice.
- 7. Environment and sustainability: Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development.
- 8. **Ethics:** Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice.
- 9. **Individual and team work:** Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings.
- 10. **Communication:** Communicate effectively on complex engineering activities with the engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions.
- 11. **Project management and finance:** Demonstrate knowledge and understanding of the engineering and management principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary environments.
- 12. Life-long learning: Recognize the need for, and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change.

INTRODUCTION - XILINX


Xilinx ISE is a software tool produced by Xilinx for synthesis and analysis of HDL designs, which enables the developer to synthesize ("compile") their designs, perform timing analysis, examine RTL diagrams, simulate a design's reaction to different stimuli, and configure the target device with the programmer.

In our Lab, the scope is limited to design and analyze the design using test benches & simulation.

The following is the step by step procedure to design in the Xilinx ISE:

1. New Project Creation

Once the Xilinx ISE Design suite is started, open a new project & enter your design name and the location path. By default 'HDL' is selected as the top-level source type. (If not, please select Top-level source type as 'HDL')

2. Continue to the next window and check if the Preferred Language is selected as 'Verilog'

No project	🖾 New Project Wizard		tem Generator for DSP, and
t one of the buttons be check out the "What's able from the "Help" me	Device Properties Specify device and project proper	ies.,	
wProjection	Select the device and design flow for t	se project	K ^m software, ISim, PlanAhead
en Project	Property Name) Value	
	Product Category	General Purpose	
en Examples a	Family	CoolRunner XPLA3 CPLDs.	~
ect Browser	Device	Automatic xcr3000xl	~
	Package		~
	Speed		id complexity
	Top-Level Source Type	HÖL	82
	Synthesis Taol	(XST (VHDE/Werllog)	
	Simulator	Modelsim-SE Mixed	ign suite
	Preferred Language	Verilog	
	Manual Comple Order		
	Enable Enhanced Design Summary		le
	Enable Message Filtering		itica anna fhitea ainmeistea.
	Display Incremental Messages	1	id Engine (SGE) compute

3. Proceed by clicking 'Next' and create a 'New Source' using the 'Create New Source' Window

check out the "What's able from the "Help" me w Project		one source at this time. You ca e "Project->New Source" comm	in add existing sources on the ne and.	xt págó, and later créate	K ^{**} software, ISim, Pla	nAhead
en Project.cov	j Sou	rcé File	Туре	New Source		
n Example	8	E		(Retreas		
ct Browser		<u> </u>	ň:			
		Mew Source Wiz	ard		X	
		Select Source Typ Select source by	e pe, file name and its location.			
		III a const				
		Schemetic Schemetic User Document Verlog Module Verlog Test Pixtu VHDL Module MHDL Ubrary	rė	File name:		
		VHDL Package		logicgates	1	10
		YHDL Test Bench		Location:		ite
				Cil/Documents and Settl	ngs\logicgates	-
	More Info					-
				and the second se		

4. Select the source type as 'Verilog Module' and input a filename and proceed to 'Next'. In the next window 'Define Module' enter the ports.

A Project	a á hewi spurcé	K ^m software	, ISim, PlanAhe		
m Projection	Source File	Туре	New Source		
n Examples.			. Attinte		
			- 329(1/2752		
ct Browser/d	6				-
	New Source Wizard	111222-01			
	Thew source wizero				1.1
	Define Module				
	Specify ports for module.				
	Module name logicgates				
	Port Name	Direction B	us MSB	158	
	A	iniput : 💌 🖂			
	В	input 🛛 💌 🖂			
	Aton	output 🔽 🖸		-	ité
	andAB	output 🛛 🖌			
	orAB	output 🛛 🔽			
	nandA8	output 🛛 👻 🖂			
	norAB	output 💌 🔄			
	xorA8	output 🛛 💙 🖸			
	Info -	output 💟 🔽		5	
	Info xnor48				
	1000	inpút. 🗸 🖸			

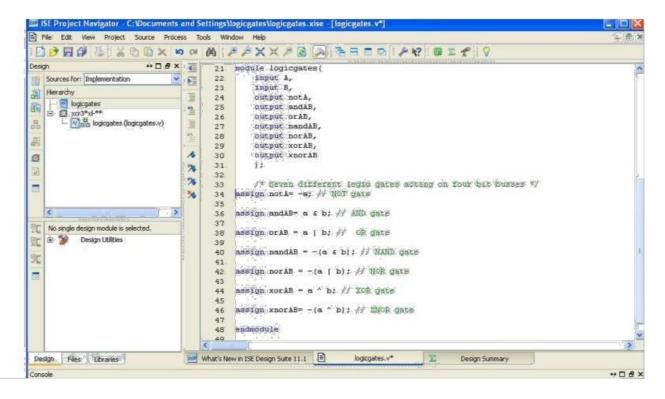
5. Finish with the New project setup with the 'Summary' window.

Source Type Source Name Module name	tory: C:\Docume : Verilog Module e: logicgates.v e: logicgates	ents and Settings logicg	ates:	
Port Definitio	A B notA andA8 orA8 nandA8 nandA8 norA8 xorA8 xorA8 xnoirA8	Pin Pin Pin Pin Pin Pin Pin Pin	input input output output output output output output	
More Info	xhorAB			sh Cancel

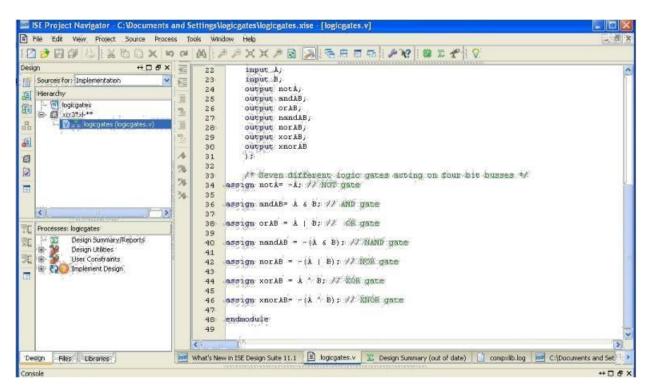
6. Once 'Finish' is selected a pop-up appears to create the directory. Select 'yes'

Add to Project: Yes	🔤 Proje	ect Navigator 🛛 🔣	
Source Directory: C:(Docu Source Type: Verilog Modu Source Name: logicgates.) Module name: logicgates Port Definitions: A B notA andAB	?	The directory 'C:\Documents and Settings\logicgates' does not exist. Would you like to create it?	
orAB nandAB	Pin	output ; output ;	
norAB	Pin	output	
×orAB ×norAB	Pin	output: .output:	
Series con-			

7. Then proceed to 'Next' in the "New Project Wizard' to 'Add Existing Sources'. 'Add source' if an existing source is available, If not proceed to 'Next' and finish with the 'Project Summary' window


No project		tem Generator for DSP, and
No project	New Project Wizard	A notice interesting and the second s
one of the buttons be heck out the "What's le from the "Help" me	Project Summary Project Navigator will create a new project with the following specifications:	
Project	Project Path: C:\Documents and Settings\logicgates Working Directory: Description: Top Level Source Type: HDL	K ^{ee} software, ISim, PlanAhead
Examplean	Device:	
t Browser	Device Family: CoolBunner XPLA3 CPLDs Device: xcr3*x1 Package: * Speed: -*	ed complexity
	Synthesis Tool: XST (VHDL/Verilog) Simulator: Modelsim-SE Mixed Preferred Language: Verilog Manual Compile Order: false	ight soite
	Enhanced Design Summary: enabled Message Filtering: disabled Display Incremental Messages: disabled	ie id Engine (SGE) compute
	New Source: Verilog Module logicgates.v	in cilline fage) comprée
		++
	More Info	Cancel

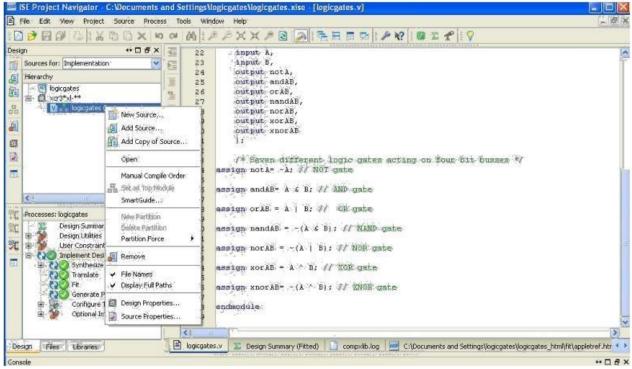
8. Design Entry and Syntax Check


The ports defined during the 'Project Creation' are defined as a module in the 'filename.v' file

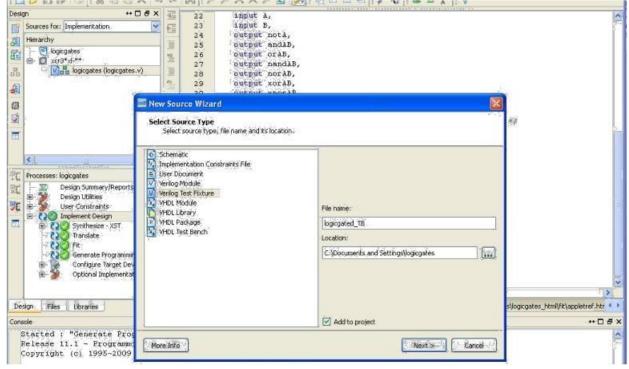
a second second		A Concestor: Implementation A Concestor: Implementatin A Concestor: Implementatin A Concestor: Implementatin	A PAXX P Page Page P	titt i
-----------------	--	--	---	--------

9. Input your design (verilog code) within the module definition

10. Select the design from the 'Hierarchy' window. In the below window of Processes 'Implement Design 'would be orange (in color) ready for implementation

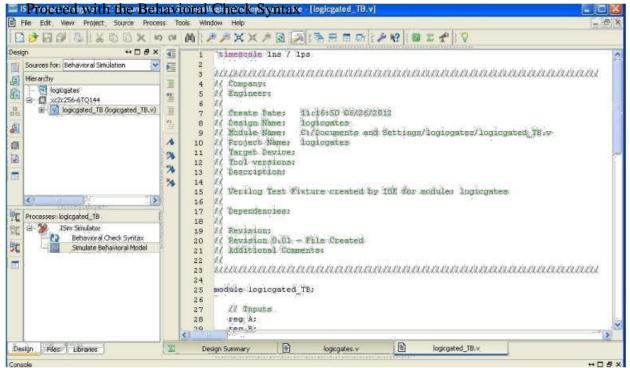


11. Double click on implement design, it turns green (in color) once the design is implemented successfully and the Summary report is displayed.


-5	0 × 0 0 × 0 0 × 0	a A PPXX					- No.	
目目	Sources for: Implementation	E XILINX	CPLD Rep	orts		C	Runner	
E		13	Fitter Report	Timing Report			10.15m 11 152.52	
	L Die logicgates (logicgates.v)	Fitter Report			Summary			
a		A.777	Design	Name	logicigates			
2	e i libri	A CONTRACTOR AND A CONTRACTOR	Fitting	Status	Successful			
	Contra Contra	all for the second s	Softwar	e Version	L.33			
	C	1. 2. 2. 2.	Device	Used	XCR3032XL	5-PC44		
e.	Processes: logicgates	Automotion Designed There is a period	Date		6-26-2012, 1	0.51AM		
· 武 王	Design Summary/Reports Design Utilities Liser Constraints		RESOURCES SUMMARY					
	Inclement Description Inclement Description Synthesize - XST Sono - XST Translate Translate Translate Configure Target Device Optional Implementation To	Equation	Macrocells Used	Pterms Used	Registers Used	Pins Used	Function Block Inputs Used	
		Display Style	7/32 (22%)	7/96 (8%)	0/32 (0%)	9(32 (29%)	2/80 (3%)	
		VHDL 💌	LOCAL CONTROL TERMRESOURCES					
			1	LCT0 LCT1	LCT2 LCT3	LCT4 LCT5	LCT6 LCT7	

12. Test-Bench creation, Simulation & Verification

To add a test-bench to the existing design, right click on the '.v' file from the Hierarchy window and select 'New Source'


13. Select 'Verilog Text Fixture' from the Select Source Type and name the Test-Bench

14. Continue to 'Finish' and a test bench is added in the project area

BO AIXBOX .	₩ ×××× × × × × × × × × × × × × × × × ×	1000
ign. ++ □ 6 × Sources for: Implementation Herarchy Ingrcgates Ingrcgates (logicgates.v) Ingrcgates (logicgates.v)		292 292
	27 // Inputs 28 reg A: 29 reg R:	151

15. Edit the test bench as per your simulation requirements and select 'Behavioral Simulation' in the 'Design Window'. In the Processes window Isim Simulator would be displayed. First

16. Double click on 'Behavioral Check Syntax' & check for no errors

	Sources for: Behavioral Sinulation Herarchy Herarchy Kocc256-61Q144 Brocesses: logicgated_TB (logicgated_TB.v) Processes: logicgated_TB Behavioral Check Synkax Simulate Behavioral Model		4 7/ Company 5 7/ Engine 6 7/ 7 7/ Dubite 8 7/ Design 9 7/ Rodule 10 7/ Rodule 10 7/ Rodule 10 7/ Rodule 11 7/ Tagal v 13 7/ Depend 16 7/ 19 7/ Depend 16 7/ 19 7/ Reviss 20 7/ Reviss 20 7/ Reviss 20 7/ Reviss 21 7/ Additi 22 7/ 23 7/7/7/7/ 24 25 module 10 26 7/ Tup	Y: Dhtes: Name: Na	11136150 OGACGA Dourogates Dourogates inglogates Secore scented by - File Dreated methan ////////////////////////////////////	lats I Sefeknar I 182 Eec	**************************************	
			28 reg k:	-4.W.				Y
De	sign Elles Libraries	x	Design Summary		logicgates.v		logicgated_TB.v	(8)
Con	sole							*DBX
	Analyzing Verilog file "C:/Do Analyzing Verilog file "C:/Do Analyzing Verilog file "C:/Zi Process "Check Syntax" comple	cumen linx/	nts and Settings. 11.1/ISE/verilp	logicga	tes/logicgated_TB	.v" into	library isim temp	<u> </u>

17. Then double click on 'Simulate Behavioral Model' and the ISIM simulator window would open. Check for the outputs

nstancies and Processes ++ - 5 ×	Objects ++ □ 0 × Simulation Objects for logicgated_T8 Image: Collect Name Value Image: Collect Name Image: Collect Name Stil Image: Collect Name Image: Col		X1: 1 000:000 ps	1 000 000 ps
Instances and Processes Source Files	e	C Default.wo	Service and the service se	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
onsole			ananoa	'++ ⊡ # ×

HDL CODE TO REALIZE ALL LOGIC GATES

AIM:

To develop the source code for logic gates by using VERILOG and obtain the simulation.

SOFTWARE & HARDWARE:

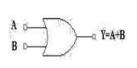
1. XILINX 9.2i

2. FPGA-SPARTAN-3E

LOGIC DIAGRAM:

AND GATE:

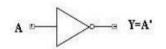
OR GATE:


LOGIC DIAGRAM:

TRUTH TABLE:

LOGICDIAGRAM TRUTH TABLE:

A	B	Y=AB
0	0	0
0	1	0
1	0	0
1	1	1



A	B	Y=A+B
0	0	0
0	1	1
1	0	1
1	1	1

NOT GATE: LOGIC DIAGRAM:

TRUTH TABLE:

NAND GATE: LOGICDIAGRAM TRUTH TABLE

Α Y=A' 0 0 0 1

Α	B	Y=(AB)'
0	0	1
0	1	1
1	0	1
1	1	0

NOR GATE: LOGIC DIAGRAM:

TRUTH TABLE:

XOR GATE: LOGICDIAGRAM

TRUTH TABLE:

A 0	B 0	Y=(A+B)'
0	1	0
1	0	0
1	1	0

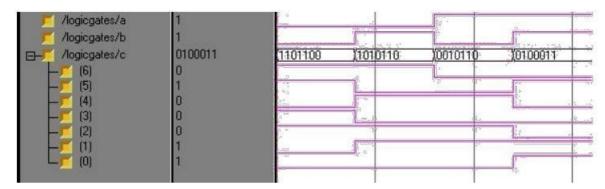
A)	>	-9	Y=A⊕B

A	B	Y=A⊕B
0	0	0
0	1	1
1	0	1
1	1	0

XNOR GATE: LOGIC DIAGRAM:

Input_A Output

TRUTH TABLE:


INP	UTS	OUTPUT
А	в	$Y = \overline{A \oplus B}$ $= AB + \overline{A} \overline{B}$
0	0	1
0	1	0
1	0	0
1	1	1

VERILOG SOURCE CODE:

module logicgates1(a, b, c); input a; input b; OUTPUT: [6:0] c; assign c[0]= a & b; assign c[1]= a | b; assign c[2]= \sim (a & b); assign c[3]= \sim (a & b); assign c[4]= a ^ b; assign c[5]= \sim (a ^ b); assign c[6]= \sim a;

endmodule

SIMULATION OUTPUT:

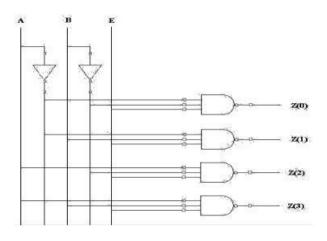
<u>RESULT</u>:

Thus the OUTPUT's of all logic gates are verified by simulating the VERILOG code.

DESIGN OF 2-TO-4 ENCODER

<u>AIM</u>:

To develop the source code for encoder by using VERILOG and obtain the simulation.

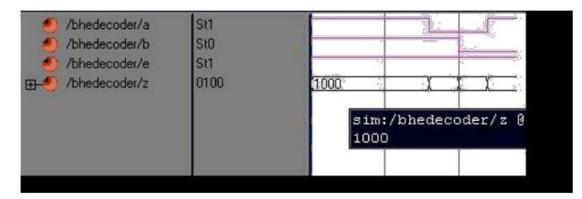

SOFTWARE & HARDWARE:

1. XILINX 9.2i

2. FPGA-SPARTAN-3E

DECODER

LOGIC DIAGRAM:


TRUTH TABLE:

Α	В	С	Z(0)	Z(1)	Z(2)	Z(3)
0	0	1	0	1	1	1
0	1	1	1	0	1	1
1	0	1	1	1	0	1
1	1	1	1	1	1	0

VERILOG SOURCE CODE:

module decoderbehv(a, b, en, z); input a; input b; input en; output [3:0] z; reg [3:0] z; reg abar,bbar; always @ (a,b,en) begin z[0] = (abar & bbar & en); z[1] = (abar & bbar & en); z[2] = (a & bbar & en); z[3] = (a & b & en);end endmodule

SIMULATION OUTPUT:

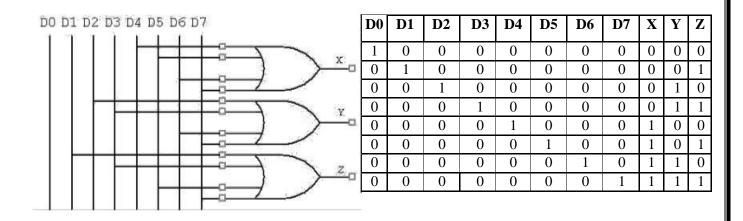
RESULT:

Thus the OUTPUT's of encoder are verified by simulating the VERILOG code.

DESIGN OF 8-TO-3 ENCODER

AIM:

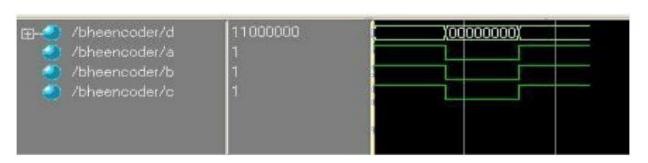
To develop the source code for encoder by using VERILOG and obtain the simulation.


SOFTWARE & HARDWARE:

1. XILINX 9.2i 2. FPGA-SPARTAN-3E

ENCODER:

LOGIC DIAGRAM:


TRUTH TABLE:

VERILOG SOURCE CODE:

module encoderbehav(d, a,b,c); input [7:0] d; output x; output y; output z; reg a,b,c; always @ (d [7:0]) begin a = d[4] | d[5] | d[6] | d[7]; b = d[2] | d[3] | d[6] | d[7]; c = d[1] | d[3] | d[5] | d[7];end endmodule

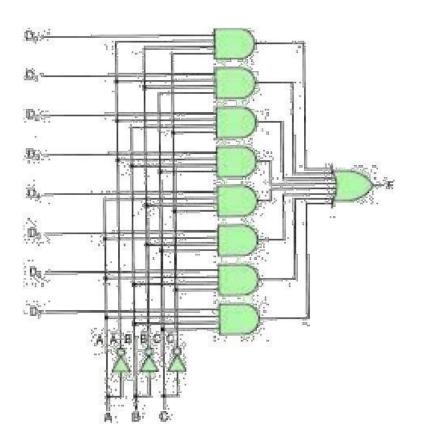
SIMULATION OUTPUT:

RESULT:

Thus the OUTPUT's of Encoded are verified by simulating the VERILOG code.

DESIGN OF 8-to-1MULTIPLEXER AND 1X8 DEMULTIPLEXER

<u>AIM</u>:

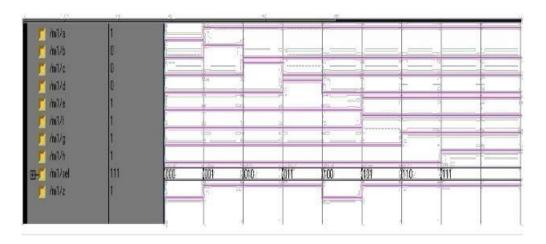

To develop the source code for 8x1 multiplexer and demultiplexer by using VERILOG and obtain the simulation.

SOFTWARE & HARDWARE:

- 1. XILINX 9.2i
- 2. FPGA-SPARTAN-3E

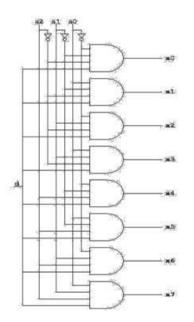
MULTIPLEXER:

LOGIC DIAGRAM:


TRUTH TABLE:

A	В.	C	D	X.
:0	Q	0	0	0
0	0	0	1:	0
0.	Ū.	1	0	0
0	0	1	1	-0
0	. 1	0	.0.1	. 0
0	1	0	1	0
0	1.	1	0	0
0	1	1	1	1
1	0	0	Ö	:0
.1	Ũ.	0	1	0
. 1	Ö	1	0	. 1
1	0		1	1
.1.	. 1	0	0	. 0
1	1	0	1	1
1	1.	1	0	1
1 1	1		1	1

VERILOG SOURCE CODE:


module MUX8TO1(sel, A,B,C,D,E,F,G,H, MUX_OUT); input [2:0] sel; input A,B,C,D,E,F,G,H; output reg MUX_OUT; always@(A,B,C,D,E,F,G,H,sel) begin case(sel) 3'd0:MUX_OUT=A; 3'd1:MUX_OUT=B; 3'd2:MUX_OUT=C; 3'd3:MUX_OUT=D; 3'd4:MUX_OUT=E; 3'd5:MUX_OUT=F; 3'd6:MUX_OUT=G; 3'd7:MUX_OUT=H; default:; // indicates null endcase end endmodule

SIMULATION OUTPUT:

DEMULTIPLEXER:

LOGIC DIAGRAM:

RESULT:

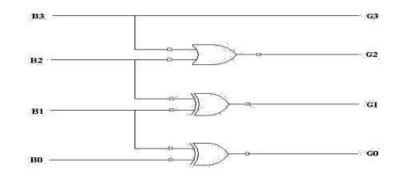
Thus the OUTPUT's of Multiplexers and Demultiplexers are verified by simulating the VHDL and VERILOG code.

DESIGN OF 4-BIT BINARY TO GRAY CONVERTER

AIM:

To develop the source code for binary to gray converter by using VERILOG and obtained the simulation.

SOFTWARE & HARDWARE:


- 1. XILINX 9.2i
- 2. FPGA-SPARTAN-3E

CODE CONVERTER (BCD TO GRAY):

TRUTH TABLE:

BCD	GRAY
0000	0000
0001	0001
0010	0011
0011	0010
0100	0110
0101	0111
0110	0101
0111	0100
1000	1100
1001	1101

LOGIC DIAGRAM:

BEHAVIORAL MODELING:

module b2g_behv(b, g); input [3:0] b; output [3:0] g; reg [3:0] g; ECE

SITS

always@(b) begin g[3]=b[3]; g[2]=b[3]^b[2]; g[1]=b[2]^b[1]; g[0]=b[1]^b[0]; end

endmodule

SIMULATION OUTPUT:

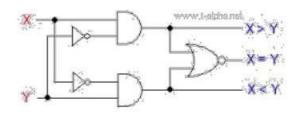
☐→ ¹ /test_vhd/b → ¹ [3] → ¹ [2] → ¹ [1]	0100 0 1 0	0000 X0100 X1000 X0000 X0100 X1000 X0100 X1000 X0000 X0100 X0000 X0000 X0000 X0000 X0000 X0000 X0000 X0000 X0000
└─ <u>,</u> (0) ⊡─, /test_vhd/g -, (3) -, (2) -, (1)	0 0110 0 1 1	
L <mark>//</mark> (0)	0	

RESULT:

Thus the OUTPUT's of binary to gray converter are verified by simulating the VERILOG code.

4-BIT COMPARATOR

AIM:


To develop the source code for 4-Bit comparator by using VERILOG and obtained the simulation .

SOFTWARE & HARDWARE:

1. XILINX 9.2i 2. FPGA-SPARTAN-3E

4-BIT COMPARATOR:

LOGIC DIAGRAM:

VERILOG SOURCE CODE:

module comparator (a ,b ,equal ,greater ,lower); output equal; output greater; output lower; input [3:0] a ; input [3:0] b; always @ (a or b) begin if (a<b) begin equal = 0;lower = 1;greater = 0;end else if (a==b) begin equal = 1;lower = 0;greater = 0;end else begin equal = 0;lower = 0;greater = 1; end end endmodule

ECE

SIMULATION OUTPUT:

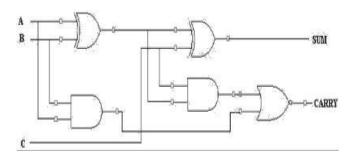
Signal name	Value	α τ' τ' \$\$9' τ' τ' 1 :#9 τ' τ' τ' 60 τ' τ'	1. 862 1, 1 1 1 1666 1 1 1, 1, 160 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Inputs			hputs	
E = 3	A.C.	18 13	X	Ac
i, ⊳-a[3] i	0.1		1	
a=a[2]	0.1		1	
P-a[1]	J	S	1	
⇒ a[0]	- 0	max		
E p b	F to 0	$\chi_1\chi_2\chi_1\chi_4\chi_5\chi_6\chi_7\chi_8\chi_9\chi_A\chi_B$	CXDXEXFX9X1X2X9X	4 X 5 X 6 X 7 X 8 X 9 X A X B X C X
e- 0[3]	1 to 0		l in the second s	
e 0[2]	1 10 0		1 1	0
► b[1]	1 to 0	T T F I P T		
[00+b[0]	- 4 to 0			<u>e la sela p</u> er
Outputs	V		Dupte	
relequal	0)(?	4	
e greater	20.10.11		0	
• lower	1.10.0	1		
	S			

RESULT:

Thus the OUTPUT's of 4-bit comparator is verified by simulating the VERILOG code.

DESIGN OF FULL ADDER USING THREE MODELING STYLES

<u>AIM</u>:


To develop the source code for full adder using three modeling styles by using VERILOG and obtained the simulation.

SOFTWARE & HARDWARE:

1. XILINX 9.2i 2. FPGA-SPARTAN-3E

FULL ADDER:

LOGIC DIAGRAM:

TRUTH TABLE:

Α	B	С	SUM	CARRY
0	0	0	0	0
0	0	1	1	0
0	1	0	1	0
0	1	1	0	1
1	0	0	1	0
1	0	1	0	1
1	1	0	0	1
1	1	1	1	1

VERILOG SOURCE CODE:

Dataflow Modeling:

module fulladddataflow(a, b, c, sum, carry);
input a;
input b;
input c;
output sum;
output carry;
assign#2 p=a&b;
assign#2 q=b&c;
assign#2 r=c&a;
assign#4 sum=a^b^c;
assign#4carry =(p1 | p2) | p3;

endmodule

Behavioral Modeling:

```
module fuladbehavioral(a, b, c, sum, carry);
  input a;
  input b;
  input c;
  output sum;
  output carry;
       reg sum,carry;
       reg p1,p2,p3;
       always @ (a or b or c) begin
       sum = (a^b)^c;
       p1=a & b;
       p2=b & c;
       p3=a & c;
       carry=(p1 | p2) | p3;
       end
endmodule
```

Structural Modeling:

```
module fa_struct(a, b, c, sum, carry);
  input a;
  input b;
  input c;
  output sum;
  output carry;
        wire t1,t2,t3,s1
        xor
        x1(t1a,b),
        x2(sum,s1,c);
        and
        a1(t1,a,b),
        a2(t2,b,c),
        a3(t3,a,c);
        or
        o1 (carry, t1, t2, t3);
endmodule
```

ECE

SIMULATION OUTPUT:

/fa/a	St1							
) /ła/b	St1				- 1			
) /ta/c	St1	E IT					10	-
/fa/sum	St1	- T	1	¥.	1			6
/fa/cany	St1		and the second			<u> 1</u>		-
/fa/p	St0	1	6		1		i .	
/ta/q	St1	*			ाली	2 20		
/fa/t	St1	1	ĥ			11		-
/fa/s	St1	e	1					
/fa/t	St1		+12 444	275 164	10			-
/fa/pwr	Su1	100		Sector Se		1	6. (<u>)</u>	-
/fa/gnd	Su0	10		112 - 4 - 1				

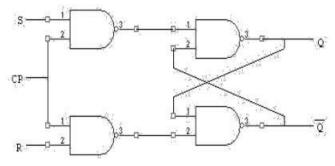
RESULT:

Thus the OUTPUT's of full adder using three modeling styles are verified by simulating the VERILOG code.

DESIGN OF FLIP FLOPS (SR,JK,D,T)

<u>AIM</u>:

To develop the source code for FLIP FLOPS by using VERILOG and obtained the simulation.


SOFTWARE & HARDWARE:

1. XILINX 9.2i

2. FPGA-SPARTAN-3E

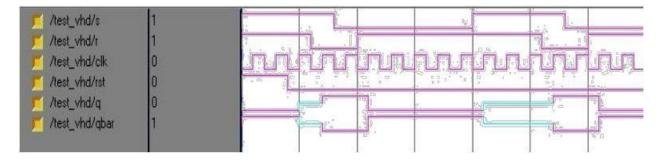
SR FLIPFLOP:

LOGIC DIAGRAM:

TRUTH TABLE:

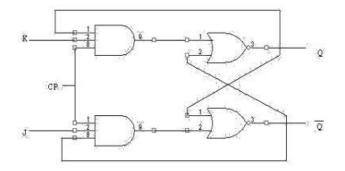
Q(t)	S	R	Q(t+1)
0	0	0	0
0	0	1	0
0	1	0	1
0	1	1	X
1	0	0	1
1	0	1	0
1	1	0	1
1	1	1	X

VERILOG SOURCE CODE:


Behavioral Modeling:

module srflipflop(s, r, clk, rst, q, qbar);
input s;
input r;
input clk;
input rst;
output q;
output qbar;
 reg q,qbar;
 always @ (posedge(clk) or posedge(rst)) begin
 if(rst==1'b1) begin
 q= 1'b0;qbar= 1'b1;
 end
 else if(s==1'b0 && r==1'b0)
 begin

ECE


q=q; qbar=qbar; end else if(s==1'b0 && r==1'b1) begin q= 1'b0; qbar= 1'b1; end else if(s==1'b1 && r==1'b0) begin q= 1'b1; qbar= 1'b0; end else begin q=1'bx;qbar=1'bx; end end endmodule

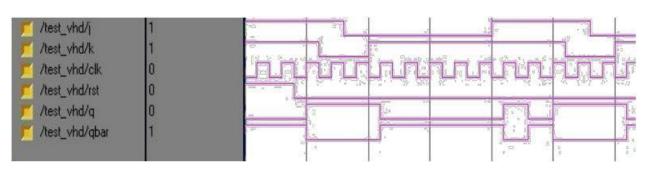
SIMULATION OUTPUT:

JK FLIPFLOP:

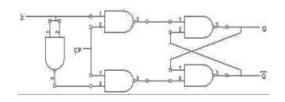
LOGIC DIAGRAM:

TRUTH TABLE:

Q(t)	J	K	Q(t+1)
0	0	0	0
0	0	1	0
0	1	0	1
0	1	1	1
1	0	0	1
1	0	1	0
1	1	0	1
1	1	1	0


ECE

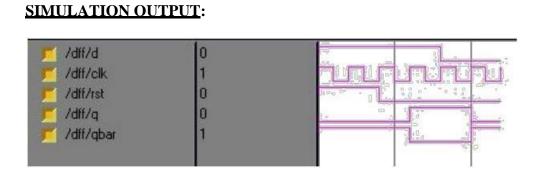
VERILOG SOURCE CODE:


Behavioral Modeling:

```
module jkff(j, k, clk, rst, q, qbar);
  input j;
  input k;
  input clk;
  input rst;
  output q;
  output qbar;
       reg q;
       reg qbar;
       always @ (posedge(clk) or posedge(rst)) begin
       if (rst==1'b1)
       begin
        q=1'b0;
       qbar=1'b1;
        end
       else if (j==1'b0 && k==1'b0)
       begin
        q=q;
       qbar=qbar;
       end
       else if (j==1'b0 && k==1'b1)
        begin
       q=1'b0;
       qbar=1'b1;
        end
       else if (j==1'b1 && k==1'b0)
       begin
       q=1'b1;
       qbar=1'b0;
       end
       else
       begin
        q=~q;
       qbar=~qbar;
       end
        end
       endmodule
```

SIMULATION OUTPUT:

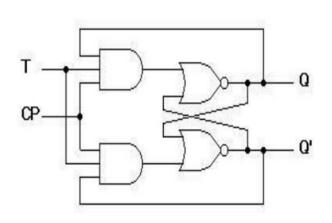
<u>D FLIPFLOP</u>: LOGIC DIAGRAM:


VERILOG SOURCE CODE:

Behavioral Modeling:

module dff(d, clk, rst, q, qbar);
input d;
input clk;
input rst;
output q;
output qbar;
reg q;
reg qbar;
always @ (posedge(clk) or posedge(rst)) begin
if (rst==1'b1)
begin
q=1'b0;
qbar=1'b1;
end
else if $(d==1'b0)$
begin
q=1'b0;
qbar=1'b1;
end
else
begin
q=1'b1;
qbar=1'b0;
end
end
endmodule

TRUTH TABLE:


Q(t)	D	Q(t+1)
0	0	0
0	1	1
1	0	0
1	1	1

T-FLIP FLOP

LOGIC DIAGRAM:

clk	D	Q	Q
0	0	Q.	ā
0	1	Q.	ā
1	0	0	1
1	1	1	0

VERILOG SOURCE CODE:

module t_flip_flop (t ,clk ,reset ,dout); output dout ; input t ; input clk ; always @ (posedge (clk)) begin if (reset) dout <= 0; else begin if (t) dout <= ~dout; end end endmodule

SIMULATION OUTPUT:

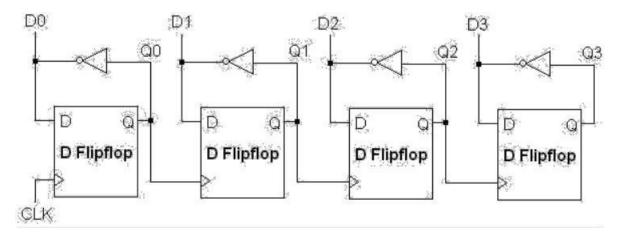
Signal name	Value	τε ε 11 200 ο 11 σταρά ε 11 6 600 11 σταροβιά ό ο τροροβίατι ε 1200 ό ο 11 1400 τε ε. Τίτ
Inputs		inputs.
p.f	0.	
⊳ reset	0	
Clock Signal		Clock Signal:
P CIR	1100	
Outputs		Dutavia .
se dout	0	

RESULT:

Thus the OUTPUT's of Flip Flops are verified by simulating the VERILOG code.

EXPERIMENT-9

DESIGN OF 4-BIT BINARY COUNTER AND BCD COUNTER


<u>AIM</u>:

To develop the source code for 4-bit binary counter and BCD counter by using VERILOG and obtained the simulation.

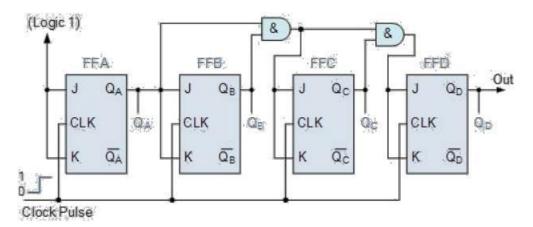
SOFTWARE & HARDWARE:

- 1. XILINX 9.2i
- 2. FPGA-SPARTAN-3E

LOGIC DIAGRAM:

VERILOG SOURCE CODE:

module Counter_4Bit (clk ,reset ,dout);


output [3:0] dout ; input clk ; input reset ; initial dout = 0; always @ (posedge (clk)) begin if (reset) dout <= 0; else dout <= dout + 1; end endmodule

SIMULATION OUTPUT:

Signal name	Value
Inputs	inputs:
D- CIK	
▶ reset	0
Outputs	Duguts
E - dout	3 0X 1 X 2 X 3 X 4 X 5 X 6 X 7 X 8 X 3 X A X B X C X D X E X F X 0 X 1 X 2 X 3 0 X 1 X 2 X 3
- dout[3]	0
-o dout[2]	
- dout[1]	
🗢 dout[0]	

BCD COUNTER

LOGIC DIAGRAM

VERILOG SOURCE CODE

```
module BCD_Counter ( clk ,reset ,dout );
output [3:0] dout ;;
input clk ;
input reset ;
initial dout = 0 ;
always @ (posedge (clk)) begin
if (reset)
dout <= 0;
else if (dout<=9) begin
dout <= dout + 1;
end else if (dout==9) begin
dout <= 0;
end
end
end
endmodule
```

SIMULATION OUTPUT:

Value	t is to 400 to it it 8000 to to is 12000 it it to 16000 it it to 2400
	hpits.
1 to 0	
0	
	Duputa
*	
00	
1,	
1	
(1) (1) (1) (1) (1) (1) (1) (1) (1) (1)	
	Z ¹ 2 ¹ 0 ¹ 1

<u>RESULT</u>:

Thus the OUTPUT's of 4-bit counter and BCD COUNTER using three modeling styles are verified by synthesizing and simulating the VERILOG code

EXPERIMENT: 10

FINITE STATE MACHINE DESIGN

AIM:

To develop the source code for finite state machine design by using VERILOG and obtained the simulation

SOFTWARE & HARDWARE:

- 1. XILINX 9.2i
- 2. FPGA-SPARTAN-3E

FSM DESIGN

VERILOG SOURCE CODE:

```
module fsm_using_function (
          , // clock
  clock
          , // Active high, syn reset
  reset
  req O
          , // Request 0
          , // Request 1
 req 1
           , // Grant 0
 gnt 0
 gnt 1
 );
 //-----Input Ports--- ----- -----
 input clock,reset,req 0,req 1;
  output gnt 0, gnt 1;
 //----Input ports Data Type-----
   //-----Output Ports Data Type------
       gnt_0,gnt_1;
 req
 //-----Internal Constants-----
 parameter SIZE = 3
                          ;
 parameter IDLE = 3'b001,GNT0 = 3'b010,GNT1 = 3'b100 ; //----
 -----Internal Variables-----Internal Variables-----
                                  ;// Seq part of the FSM
     [SIZE-1:0]
                       state
 req
   //-----Code startes Here-----
 assign next state = fsm function(state, req 0, req 1);
 //-----Function for Combo Logic------
 function [SIZE-1:0] fsm function;
   input [SIZE-1:0]
                   state ;
   input
          req 0 ;
   input
          req_1 ;
   case(state)
    IDLE : if (req 0 == 1'b1) begin
               fsm function = GNT0;
             end else if (req 1 == 1'b1) begin
               fsm function= GNT1;
             end else begin
               fsm function = IDLE;
             end
    GNT0 : if (req 0 == 1'b1) begin
               fsm function = GNT0;
```

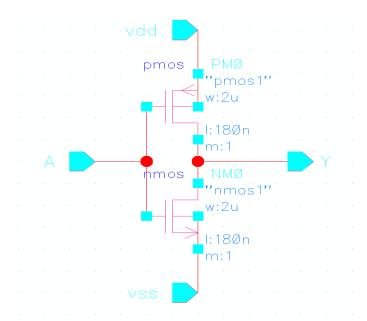
end else begin fsm function = IDLE; end GNT1 : if (req_1 == 1'b1) begin fsm_function = GNT1; end else begin fsm function = IDLE; end default : fsm function = IDLE; endcase endfunction //-----Seq Logic----always @ (posedge clock) begin : FSM SEQ if (reset == 1'b1) begin state <= #1 IDLE; end else begin state <= #1 next state; end end //----Output Logic--always @ (posedge clock) begin : OUTPUT_LOGIC if (reset == 1'b1) begin gnt_0 <= #1 1'b0; gnt_1 <= #1 1'b0; end else begin case(state) IDLE : begin gnt 0 <= # 1'b0; gnt_1 <= 1 1'b0; # 1 end GNT0 : begin gnt 0 <= #1 1'b1; gnt 1 <= #1 1'b0; end GNT1 : begin gnt 0 <= #1 1'b0; gnt 1 <= #1 1'b1; end default : begin gnt 0 <= #1 1'b0; gnt_1 <= #1 1'b0; end endcase end end // End Of Block OUTPUT LOGIC endmodule // End of Module arbiter

<u>RESULT</u>:

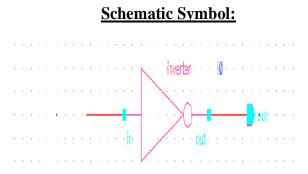
Thus the OUTPUT's of finite state machine design is verified by simulating the VERILOG code.

EXPERIMENT: 11

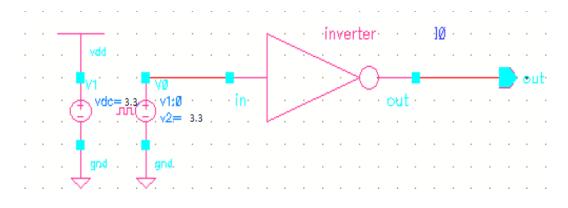
DESIGN AND IMPLEMENTATION OF AN INVERTER


AIM: To design and Implementation of an Inverter

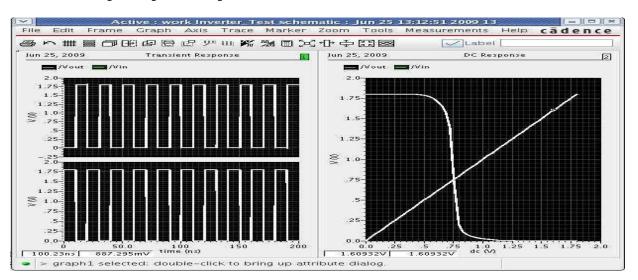
TOOLS: Mentor Graphics: Pyxis Schematic, Pyxis Layout, Eldo, Ezwave, Calibre


THEORY:

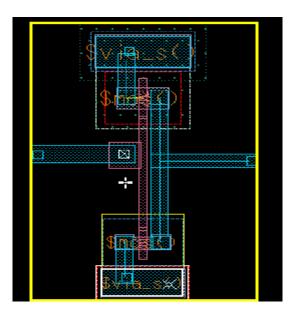
The inverter is universally accepted as the most basic logic gate doing a Boolean operation on a single input variable. Fig.1 depicts the symbol, truth table and a general structure of a CMOS inverter. As shown, the simple structure consists of a combination of an pMOS transistor at the top and a nMOS transistor at the bottom.CMOS is also sometimes referred to as **complementary-symmetry metal–oxide–semiconductor**. The words "complementary- symmetry" refer to the fact that the typical digital design style with CMOS uses complementary and symmetrical pairs of p-type and n-type metal oxide semiconductor field effect transistors (MOSFETs) for logic functions. Two important characteristics of CMOS devices are high noise immunity and low static power consumption. Significant power is only drawn while the transistors in the CMOS device are switching between on and off states. Consequently, CMOS devices do not produce as much waste heat as other forms of logic, for example transistor-transistor logic (TTL) or NMOS logic, which uses all n-channel devices without p-channel devices.


Schematic Capture:

- 1. Connect the Circuit as shown in the circuit diagram using Pyxis Schematic tool
- 2. Enter into Simulation mode.
- **3**. Setup the Analysis and library.
- 4. Setup the required analysis.
- 5. Probe the required Voltages
- 6. Run the simulation.
- 7. Observe the waveforms in EZ wave.
- 8. Draw the layout using Pysis Layout.
- 9. Perform Routing using IRoute
- 10. Perform DRC, LVS, PEX.



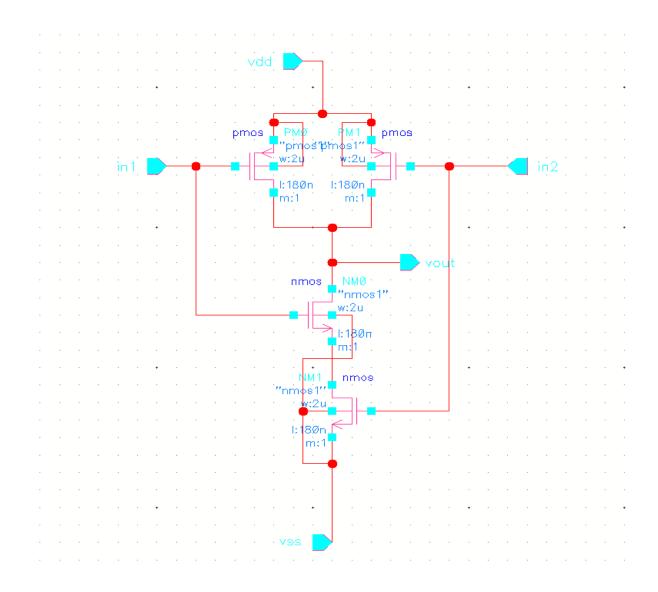
Testing the Schematic:



Simulation Output: Input Vs Output Ti

Transient and DC Characteristics:

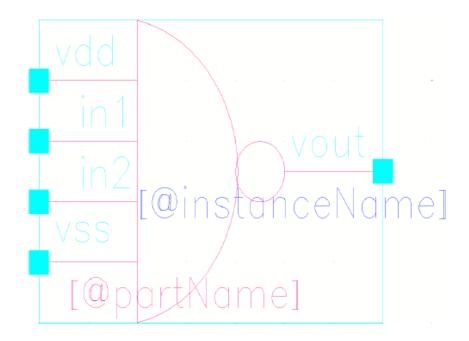
Layout of the Inverter:

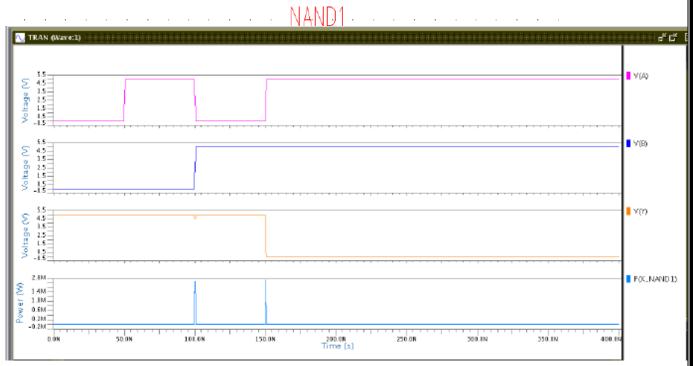

EXPERIMENT: 12

NAND GATE

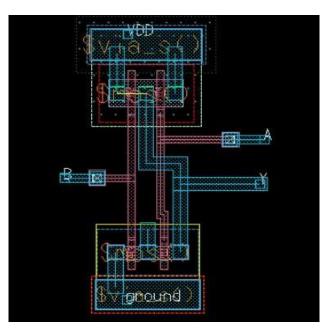
AIM: To create a library and build a schematic of a NAND GATE, to create a symbol for the Inverter, to build an Inverter Test circuit using your Inverter, To set up and run simulations on the Inverter Test design.

EDA Tool: Mentor Graphics

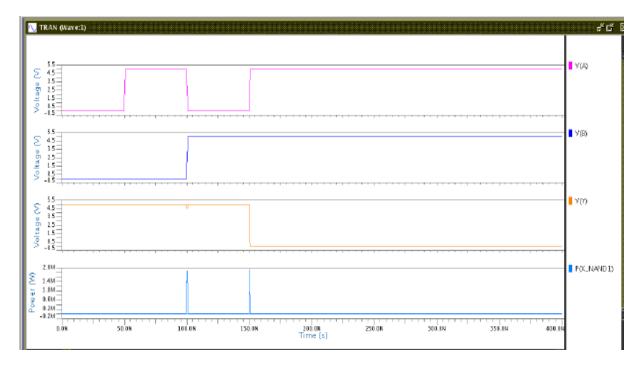

Schematic Diagram


PROCEDURE:

- 1. Connect the Circuit as shown in the circuit diagram using Pyxis schematic.
- 2. Create a simulation schematic for simulation.
- 3. Add necessary nets in outputs to view waveforms.
- 4. Run the Simulation and observe results in EZwave.
- 5. Draw the Layout for the circuit using Pyxis Layout.
- 7. Run the physical verification (DRC, LVS, PEX) using Calibre tool.
- 8. Run the post layout simulation by adding the .dspf file generated in PEX.
- 9. Observe the post layout results.


Symbol Creation:

Building the NAND Test Design



Creating a layout view of NAND gate

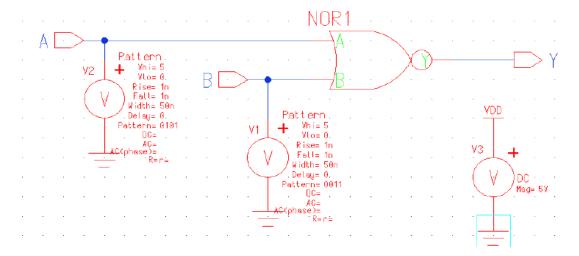
ECE

Simulation Output:

SITS

EXPERIMENT NO: 13

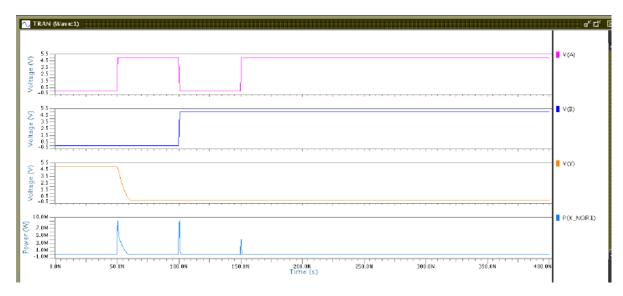
NOR GATE

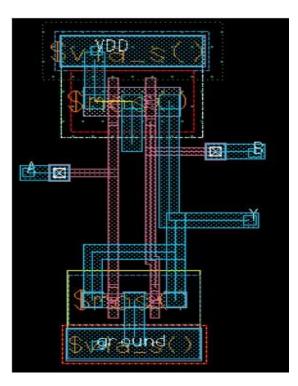

AIM: To design and simulate the CMOS NOR gate

TOOLS: Mentor Graphics: Pyxis Schematic, Pyxis Layout, Eldo, Ezwave, Calibre

CIRCUIT DIAGRAM:

M3 M08 M08 M08	· · · · ·
	· · · · ·
и и и и и и и и и и и и и и и и и и и	· · · ·
M3 , Martin La Carte Car	
an a A 🖸 🔶 👘 👘 a a a a a a a	
· · · · · · · · · · · · · · · · · · ·	
M1 ₩2.50 M1 ₩2.50 M100 ₩2.50 M100 ₩2.50 M100 ₩2.50 M100 ₩2.50 M100 ₩2.50 M10 ± 0.50 M10	
· · · · · · · · · · · · · · · · · · ·	
· · · · · · · · · · · · · · · · · · ·	≫Yr t
M1 H=a26u . M2 H=a346u	
H=0.280 · · · · · · · · · · · · · · · · · · ·	
and a second second second <mark>lings of second lings of second s</mark>	

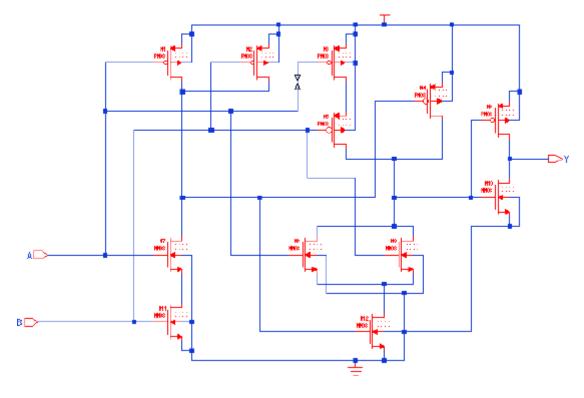

SIMULATION CIRCUIT:


PROCEDURE:

- 1. Connect the Circuit as shown in the circuit diagram using Pyxis schematic.
- 2. Create a simulation schematic for simulation.
- 3. Add necessary nets in outputs to view waveforms.
- 4. Run the Simulation and observe results in EZwave.
- 5. Draw the Layout for the circuit using Pyxis Layout.
- 7. Run the physical verification (DRC, LVS, PEX) using Calibre tool.
- 8. Run the post layout simulation by adding the .dspf file generated in PEX.
- 9. Observe the post layout results.

Simulation Output:

Layout:

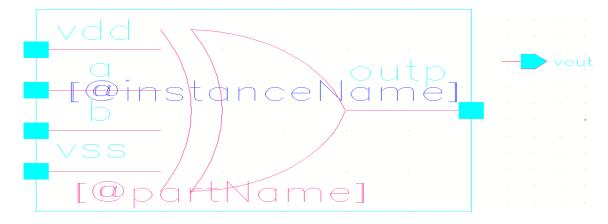


EXPERIMENT NO: 14

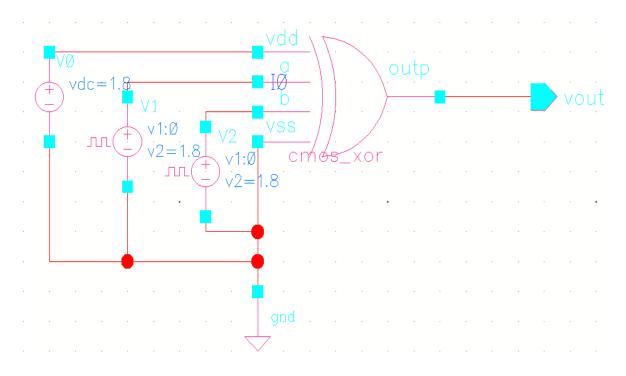
XOR GATE

AIM: To create a library and build a schematic of an XOR gate, to create a symbol for the XOR, to build an inverter test circuit using your XOR, to set up and run simulations on the XOR_test design.

EDA TOOLS: pyxis schematic, pyxis layout, eldo, ezwave, calibre

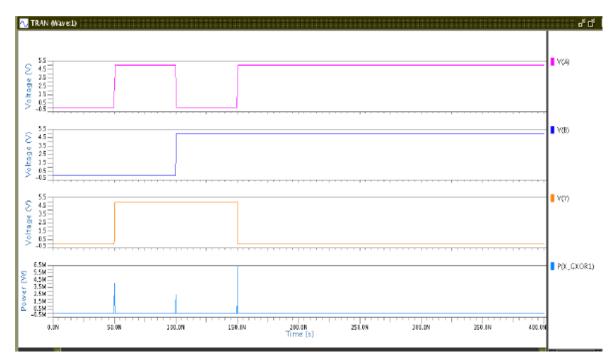


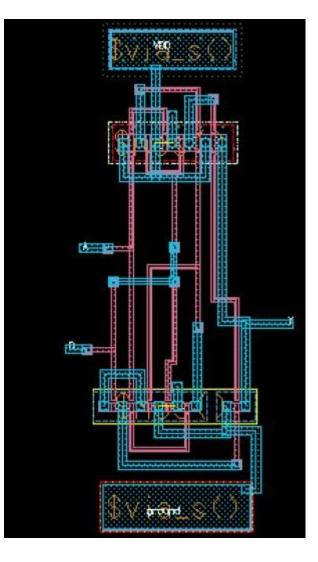
PROCEDURE:


- 1. Connect the Circuit as shown in the circuit diagram using Pyxis schematic.
- 2. Create a simulation schematic for simulation.
- 3. Add necessary nets in outputs to view waveforms.
- 4. Run the Simulation and observe results in EZwave.
- 5. Draw the Layout for the circuit using Pyxis Layout.

- 7. Run the physical verification (DRC, LVS, PEX) using Calibre tool.
- 8. Run the post layout simulation by adding the .dspf file generated in PEX.
- 9. Observe the post layout results.

Symbol Creation:


Building the XOR Gate Test Design


PROCEDURE:

- 1. Connect the Circuit as shown in the circuit diagram using Pyxis schematic.
- 2. Create a simulation schematic for simulation.
- 3. Add necessary nets in outputs to view waveforms.
- 4. Run the Simulation and observe results in EZwave.
- 5. Draw the Layout for the circuit using Pyxis Layout.
- 7. Run the physical verification (DRC, LVS, PEX) using Calibre tool.
- 8. Run the post layout simulation by adding the .dspf file generated in PEX.
- 9. Observe the post layout results

Simulation output:

Layout:

